RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 431, Pages 72–81 (Mi znsl6095)

This article is cited in 5 papers

On the Littlewood–Offord problem

Yu. S. Eliseevaab, A. Yu. Zaitsevac

a St. Petersburg State University, St. Petersburg, Russia
b Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
c St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract: The paper deals with studying a connection of the Littlewood–Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. Some multivariate generalizations of results of Arak (1980) are given. They show a connection of the concentration function of the sum with the arithmetic structure of supports of distributions of independent random vectors for arbitrary distributions of summands.

Key words and phrases: concentration functions, inequalities, the Littlewood–Offord problem, sums of independent random variables.

UDC: 519.2

Received: 18.11.2014


 English version:
Journal of Mathematical Sciences (New York), 2016, 214:4, 467–473

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025