RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2014 Volume 431, Pages 198–208 (Mi znsl6103)

Lattice point problem and the question of estimation and detection of smooth functions of many variables

I. A. Suslina

St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia

Abstract: We consider the problem of asymptotics of $N_d(m)$, where $N_d(m)$ is the number of integer lattice points in the $d$-dimensional ball of radius $m$ (in $l_1$ and $l_2$-norms) for $d\to\infty$, $m\to\infty$. We show that this asymptotics differs from the asymptotic volume of $d$-dimensional ball of radius $m$ when the rate of convergence of $d$ to infinity is sufficiently high in comparison with that of $m$.

Key words and phrases: lattice point problem, growth of dimension, the asymptotic behavior of the number of integral points.

UDC: 519

Received: 17.11.2014


 English version:
Journal of Mathematical Sciences (New York), 2016, 214:4, 554–561

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025