RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 432, Pages 105–110 (Mi znsl6113)

Some generalizations of the Cauchy–Davenport theorem

V. V. Volkova, F. V. Petrovab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We investigate two possible generalizations of the Cauchy–Davenport inequality $|A+B|\geq\min(p,|A|+|B|-1)$ for nonempty sets $A,B$ of residues modulo a prime number $p$. The first one deals with another way of measuring the size of a set of points in an affine space (rather than just taking the cardinality), namely, with algebraic complexity. The second one concentrates on the multiplicative group of a field.

Key words and phrases: Cauchy–Davenport inequality, polynomial method, algebraic complexity.

UDC: 519.118+512.622

Received: 26.01.2015


 English version:
Journal of Mathematical Sciences (New York), 2015, 209:6, 874–877

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025