RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 432, Pages 111–127 (Mi znsl6114)

Constructing $\mathrm{SU(2)\times U(1)}$ orbit space for qutrit mixed states

V. Gerdta, A. Khvedelidzeab, Y. Paliica

a Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
b Ivane Javakhishvili Tbilisi State University, A. Razmadze Mathematical Institute, Tbilisi, Georgia
c Institute of Applied Physics, Moldova Academy of Sciences, Chisinau, Republic of Moldova

Abstract: The orbit space $\mathfrak P(\mathbb R^8)/\mathrm G$ of the group
$$ \mathrm{G:=SU(2)\times U(1)\subset U(3)} $$
acting adjointly on the state space $\mathfrak P(\mathbb R^8)$ of a $3$-level quantum system is discussed. The semi-algebraic structure of $\mathfrak P(\mathbb R^8)/\mathrm G$ is determined within the Procesi–Schwarz method. Using the integrity basis for the ring of $\mathrm G$-invariant polynomials $\mathbb R[\mathfrak P(\mathbb R^8)]^\mathrm G$, the set of constraints on the Casimir invariants of the group $\mathrm U(3)$ coming from the positivity requirement for Procesi–Schwarz gradient matrix, $\mathrm{Grad}(z)\geqslant0$, is analyzed in detail.

Key words and phrases: theory of invariants, orbit space, semi-algebraic sets, qutrit, entanglement space.

UDC: 512.81+530.145

Received: 29.07.2014

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2015, 209:6, 878–889

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024