Abstract:
We consider a linear skew product with the full shift in the base and nonzero Lyapunov exponent in the fiber. We provide a sharp estimate for the precision of shadowing for a typical pseudotrajectory of finite length. This result indicates that the high-dimensional analog of the Hammel–Yorke–Grebogi conjecture concerning the interval of shadowability for a typical pseudotrajectory is not correct. The main technique is the reduction of the shadowing problem to the ruin problem for a simple random walk.
Key words and phrases:shadowing, skew product, random walk, large deviation principle.