RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 432, Pages 261–273 (Mi znsl6120)

This article is cited in 2 papers

Shadowing in linear skew products

S. Tikhomirovab

a Chebyshev Laboratory, St. Petersburg State Univeristy, 14th line of Vasilievsky Island, 29B, St. Petersburg 199178, Russia
b Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany

Abstract: We consider a linear skew product with the full shift in the base and nonzero Lyapunov exponent in the fiber. We provide a sharp estimate for the precision of shadowing for a typical pseudotrajectory of finite length. This result indicates that the high-dimensional analog of the Hammel–Yorke–Grebogi conjecture concerning the interval of shadowability for a typical pseudotrajectory is not correct. The main technique is the reduction of the shadowing problem to the ruin problem for a simple random walk.

Key words and phrases: shadowing, skew product, random walk, large deviation principle.

UDC: 517.9

Received: 03.11.2014

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2015, 209:6, 979–987

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025