RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 433, Pages 20–40 (Mi znsl6125)

This article is cited in 4 papers

Representations of quantum conjugacy classes of orthosymplectic groups

Th. Ashton, A. Mudrov

Department of Mathematics, University of Leicester, University Road, LE1 7RH Leicester, UK

Abstract: Let $G$ be the complex symplectic or special orthogonal group and $\mathfrak g$ its Lie algebra. With every point $x$ of the maximal torus $T\subset G$ we associate a highest weight module $M_x$ over the Drinfeld–Jimbo quantum group $U_q(\mathfrak g)$ and a quantization of the conjugacy class of $x$ by operators in $\mathrm{End}(M_x)$. These quantizations are isomorphic for $x$ lying on the same orbit of the Weyl group, and $M_x$ support different representations of the same quantum conjugacy class.

Key words and phrases: quantum groups, deformation quantization, conjugacy classes.

UDC: 517.9

Received: 02.03.2015

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2016, 213:5, 637–650

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024