RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 434, Pages 82–90 (Mi znsl6143)

Sharp Bernstein type inequalities for splines in the mean square metrics

O. L. Vinogradov

St. Petersburg State University, St. Petersburg, Russia

Abstract: We give an elementary proof of the sharp Bernstein type inequality
$$ \|f^{(s)}\|_2\le\frac{n^s}{2^s}\left(\frac{\mathcal K_{2r+1-2s}}{\mathcal K_{2r+1}}\right)^{1/2}\|\delta^s_\frac\pi n f\|_2. $$
Here $n,r,s\in\mathbb N$, $f$ is a $2\pi$-periodic spline of order $r$ and of minimal defect with nodes $\frac{j\pi}n$ ($j\in\mathbb Z$), $\delta^s_h$ is the difference operator of order $s$ with step $h$, and the $\mathcal K_m$ are the Favard constants. A similar inequality for the space $L_2(\mathbb R)$ is also established.

Key words and phrases: Bernstein inequality, exponential splines.

UDC: 517.5

Received: 20.04.2015


 English version:
Journal of Mathematical Sciences (New York), 2016, 215:5, 595–600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025