RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 435, Pages 47–72 (Mi znsl6151)

This article is cited in 4 papers

Ultrasolvable covering of the group $Z_2$ by the groups $Z_8$, $Z_{16}$ and $Q_8$

D. D. Kiselev

All-Russian Academy of International Trade, Moscow, Russia

Abstract: We construct infinite series of non-trivial ultrasolvable embedding problems with cyclic kernel of order $8,16$ and quaternion kernel of order $8$. Moreover, we discover $2$-local non-split universally solvable embedding problems of a quadratic extension into a Galois algebra whose kernel is generalized quaternion or cyclic.

Key words and phrases: ultrasolvability, embedding problem.

UDC: 512.623

Received: 21.04.2015


 English version:
Journal of Mathematical Sciences (New York), 2016, 219:4, 523–538

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025