RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 435, Pages 113–162 (Mi znsl6154)

This article is cited in 11 papers

On Schur $2$-groups

M. Muzychuka, I. Ponomarenkob

a Netanya Academic College, Netanya, Israel
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: A finite group $G$ is called a Schur group, if any Schur ring over $G$ is the transitivity module of a point stabilizer in a subgroup of $\operatorname{Sym}(G)$ that contains all right translations. We complete a classification of abelian Schur $2$-groups by proving that the group $\mathbb Z_2\times\mathbb Z_{2^n}$ is Schur. We also prove that any non-abelian Schur $2$-group of order larger than $32$ is dihedral (the Schur $2$-groups of smaller orders are known). Finally, in the dihedral case, we study Schur rings of rank at most $5$, and show that the unique obstacle here is a hypothetical S-ring of rank $5$ associated with a divisible difference set.

Key words and phrases: S-ring, Schur group, difference set.

UDC: 512.542

Received: 28.04.2015


 English version:
Journal of Mathematical Sciences (New York), 2016, 219:4, 565–594

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024