RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 436, Pages 189–198 (Mi znsl6167)

This article is cited in 1 paper

Several remarks on groups of automorphisms of free groups

Yu. A. Neretinabcd

a State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
d University of Vienna, Vienna, Austria

Abstract: Let $\mathbb G$ be the group of automorphisms of a free group $F_\infty$ of infinite order. Let $\mathbb H$ be the stabilizer of the first $m$ generators of $F_\infty$. We show that the double cosets $\Gamma_m=\mathbb{H\setminus G/H}$ admit a natural semigroup structure. For any compact group $K$, the semigroup $\Gamma_m$ acts in the space $L^2$ on the product of $m$ copies of $K$.

Key words and phrases: free group, infinite symmetric group, double cosets, conjugacy classes, infinite-dimensional groups.

UDC: 512.544.43+512.547.4

Received: 22.07.2015


 English version:
Journal of Mathematical Sciences (New York), 2016, 215:6, 748–754

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024