RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2007 Volume 348, Pages 40–97 (Mi znsl62)

This article is cited in 4 papers

The Cauchy–Dirichlet problem for the heat equation in Besov spaces

E. Zadrzyńskaa, W. Zajączkowskib

a Warsaw University of Technology
b Institute of Mathematics of the Polish Academy of Sciences

Abstract: In the paper, we study the solvability in anisotropic spaces $B_{p,q}^{{\sigma\over2}\!,\sigma}(\Omega^T)$, $\sigma\in\mathbb R_+$, $p,q\in(1,\infty)$, of the heat equation $u_t-\Delta u=f$ in $\Omega^T\equiv(0,T)\times\Omega$ with the boundary and initial conditions: $u=g$ on $S^T$, $u|_{t=0}=u_0$ in $\Omega$, where $S$ is the boundary of a bounded domain $\Omega\subset\mathbb R^n$.

UDC: 517

Received: 12.10.2007

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2008, 152:5, 638–673

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024