RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 439, Pages 93–98 (Mi znsl6202)

Neutral subspaces of complex matrices

Kh. D. Ikramov

Lomonosov Moscow State University, Moscow, Russia

Abstract: Consider the quadratic matrix equation $X^TDX+AX+X^TB+C=0$, where all the matrices are square and have the same order $n$. With this equation, we associate a block matrix $M$ of the double order $2n$. the solvability of the equation turns out to be related to the existence of neutral subspaces of dimension $n$ for this matrix. Reasonably general conditions ensuring the existence of such subspaces are presented.

Key words and phrases: quadratic matrix equation, neutral subspace, congruences, Jordan form, cosquare.

UDC: 512.643.4

Received: 28.07.2015


 English version:
Journal of Mathematical Sciences (New York), 2016, 216:6, 783–786

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024