This article is cited in
1 paper
On the mean square of the error term for Dedekind zeta functions
O. M. Fomenko St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let
$K_n$ be a number field of degree
$n$ over
$\mathbb Q$. Denote by
$D(x,K_n)$ the number of all non-zero integral ideals in
$K_n$ with norm
$\leq x$. The Dedekind zeta function
$\zeta_{K_n}(s)$ is a meromorphic function with a simple pole at
$s=1$, with residue, say,
$\Lambda_n$. Define
$$
\Delta(x, K_n)=D(x, K_n)-\Lambda_n x.
$$
The history of estimates of
$\Delta(x,K_n)$ begins with
$$
\Delta (x, K_n)\ll x^{1-\frac1n}\qquad\text{(Weber (1896))}
$$
and
$$\Delta(x, K_n)\ll x^{\frac{n-1}{n+1}}\qquad\text{(Landau (1917))}.
$$
If
$n>2$, then
$$
\int^x_1\Delta(y, K_n)^2\,dy\ll x^{3-\frac4n}\log^nx,
$$
which is a result of Chandrasekharan and Narasimhan (1964).
In this paper the following new results are obtained.
1) For
$K_4=\mathbb Q(\root4\of{m})$,
$m>1$ is square-free, the author proves
$$
x^{\frac74}\ll\int^x_1\Delta(y,K_4)^2dy\ll x^{\frac74+\varepsilon}.
$$
2) For
$K_6$, the normal closure of a cubic field
$K_3$ with the Galois group
$S_3$ and discriminant
$\Delta<0$, the author proves
$$
x^{\frac{11}6}\ll\int^x_1\Delta(y,K_6)^2\,dy\ll x^{2+\varepsilon}.
$$
Key words and phrases:
Dedekind zeta function, ideal distribution, mean values.
UDC:
511.466+517.863
Received: 19.10.2015