RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2015 Volume 441, Pages 119–143 (Mi znsl6229)

This article is cited in 4 papers

On the classification problem of measurable functions in several variables and on matrix distributions

A. M. Vershikab, U. Haböckc

a Steklov Inst. of Mathematics, St. Petersburg, Fontanka 27, St. Petersburg, 191023, Russia
b Math. Dept of St. Petersburg State University, Russia
c Cometence Centre for IT-Security, Fachhochschule Campus Wien, Favoritenstrasse 226, A-1100 Wien, Austria

Abstract: We resume the results from [12] on the classification of measurable functions in several variables, with some minor corrections of purely technical nature. We give a partial solution of he characterization problem of so-called matrix distributions, which are the metric invariants of measurable functions introduced in [12]. Matrix distibutions considered as $\S_\mathbb N\times\S_\mathbb N$-invariant, ergodic measures on the space of matrices – this fact connects our problem with Aldous' and Hoover's theorem [2,6].

Key words and phrases: classification of measurable functions, matrix distributions, pure functions, simple measures.

UDC: 519

Received: 19.09.2015

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2016, 219:5, 683–699

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025