RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 443, Pages 133–146 (Mi znsl6262)

This article is cited in 8 papers

On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains

I. A. Panina, A. K. Stavrovab

a Steklov Institute of Mathematics at St. Petersburg, Fontanka 27, St. Petersburg 191023, Russia
b Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia

Abstract: Let $R$ be a semi-local Dedekind domain and let $K$ be the field of fractions of $R$. Let $G$ be a reductive semisimple simply connected $R$-group scheme such that every semisimple normal $R$-subgroup scheme of $G$ contains a split $R$-torus $\mathbb G_{m,R}$. We prove that the kernel of the map
$$ H^1_{\unicode{x00E9}\unicode{x74}}(R,G)\to H^1_{\unicode{x00E9}\unicode{x74}}(K,G) $$
induced by the inclusion of $R$ into $K$, is trivial. This result partially extends the Nisnevich theorem [10, Thm.4.2].

Key words and phrases: reductive group, principal bundle.

UDC: 512

Received: 02.12.2015

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2017, 222:4, 453–462

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025