RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 443, Pages 222–233 (Mi znsl6265)

This article is cited in 6 papers

Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results

A. V. Shchegolev

St. Petersburg State University, St. Petersburg, Russia

Abstract: Let $H$ be a subgroup of the hyperbolic unitary group $\operatorname U(2n,R,\Lambda)$ that contains the elementary block-diagonal subgroup $\operatorname{EU}(\nu,R,\Lambda)$ of type $\nu$. Assume that all self-conjugate blocks of $\nu$ are of size at least 6 (at least 4 if the form parameter $\Lambda$ satisfies the condition $R\Lambda+\Lambda R=R$) and that all non-self-conjugate blocks are of size at least 5. Then there exists a unique major exact form net of ideals $(\sigma,\Gamma)$ such that $\operatorname{EU}(\sigma,\Gamma)\le H\le\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$, where $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ stands for the normalizer in $\operatorname U(2n,R,\Lambda)$ of the form net subgroup $\operatorname U(\sigma,\Gamma)$ of level $(\sigma,\Gamma)$ and $\operatorname{EU}(\sigma,\Gamma)$ denotes the corresponding elementary form net subgroup. The normalizer $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ is described in terms of congruences.

Key words and phrases: hyperbolic unitary group, elementary subgroup, transvections, parabolic subgroups, standard automorphisms, block-diagonal subgroups, localization.

UDC: 513.6

Received: 02.12.2015


 English version:
Journal of Mathematical Sciences (New York), 2017, 222:4, 516–523

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025