RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 444, Pages 110–123 (Mi znsl6271)

This article is cited in 2 papers

On variational representations of the constant in the inf sup condition for the Stokes problem

S. Repinab

a V. A. Steklov Institute of Mathematics in St.-Petersburg, 191011, Fontanka 27, Sankt-Petersburg, Russia
b St. Petersburg State Polytehnial University, Polytehniheskaya 29, St. Petersburg, Russia

Abstract: We deduce variational representations of the constant $c_\Omega$ in the inf sup condition for the Stokes problem in a bounded Lipschitz domain in $\mathbb R^d$, $d\geq2$. For any pair of admissible functions the respective variational functional provides an upper bound of $c_\Omega$ and the exact infimum of it is equal to $c_\Omega$. Minimization of the functionals over suitable finite dimensional subspaces generates monotonically decreasing sequences of numbers converging to $c_\Omega$ and, therefore, they can be used for numerical evaluation of the constant.

Key words and phrases: inf sup condition, exact constants, Stokes problem.

UDC: 517

Received: 03.02.2016

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2017, 224:3, 456–467

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024