RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 445, Pages 250–267 (Mi znsl6279)

Extreme values of Epstein zeta-functions

O. M. Fomenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $Q(u_1,u_2,\dots,u_l)$ be a positive definite quadratic form in $l(\geq2)$ variables and with integer coefficients. Put
$$ \zeta_Q(s)=\sum'(Q(u_1,u_2,\dots,u_l))^{-s} $$
where the accent indicates that the summation is over all integer $l$-tuples $(u_1,u_2,\dots,u_l)$ with the exception of $(0,0,\dots,0)$. It is known that $\zeta_Q(s)\big(s-\frac l2\big)$ is an entire function.
We treat $\Omega$-theorems for $\zeta_Q(s)l\leq3)$ and for some $\zeta_Q(s)(l=2)$. Let $l\leq4$ and $F_Q(s)=\zeta_Q\big(s+\frac l2-1\big)$. As $t$ tends to infinity, we have
$$ \log\bigg|F_Q\biggl(\frac12+it\biggr)\bigg|=\Omega_+\bigg(\bigg(\frac{\log t}{\log\log t}\bigg)^{1/2}\bigg), $$
and
$$ \log |F_Q(\sigma_0+it)|=\Omega_+\bigg(\frac{(\log t)^{1-\sigma_0}}{\log\log t}\bigg) $$
for fixed $\sigma_0\in\big(\frac12,1\big)$.

Key words and phrases: Epstein zeta-function, quadratic form, extremal value.

UDC: 511.466+517.863

Received: 09.03.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 222:5, 690–702

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024