RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 446, Pages 165–181 (Mi znsl6288)

This article is cited in 2 papers

Abel pairs and modular curves

D. Oganesyan

Moscow Lomonosov State University

Abstract: We consider rational functions on algebraic curves which have a single zero and a single pole. A pair consisting of such a function and a curve is called Abel pair; a special case of an Abel pair is a Belyi pair. In this paper, we study moduli spaces of Abel pairs for curves of genus one. In particular, we compute a number of Belyi pairs over the fields $\mathbb C$ and $\overline{\mathbb F_p}$. This approach could be fruitfully used for the study of Hurwitz spaces and modular curves for fields of finite characteristics.

Key words and phrases: Belyi pairs, dessins d'enfants, Abel pairs, reduction to positive characteristic, embedded graphs, modular curves, elliptic curves.

UDC: 512.772.7+515.179.25

Received: 30.04.2016

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2017, 226:5, 655–666

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025