RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 248, Pages 124–146 (Mi znsl629)

Solution of arbitrary systems of nonlinear algebraic equations. Methods and algorithms. IV

V. N. Kublanovskaya

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: This paper considers the solution of a systems of $m$ nonlinear equations in $q\ge2$ variables (SNAEs-$q$). A method for finding all of the finite zero-dimensional roots of a given SNAE-$q$, which extends the method suggested in [2] for $q=2$ and $q=3$ to the case $q\ge2$, is developed and theoretically justified. This method is based on the algorithm of $\Delta W$-$q$ factorization of a polynomial $q$-parameter matrix $[1]$ and on the algorithm of relative factorization of a polynomial in $q$ variables $[3]$.

UDC: 519

Received: 02.12.1996


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:4, 3300–3314

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025