RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 447, Pages 20–32 (Mi znsl6291)

This article is cited in 1 paper

An analog of the hyperbolic metric generated by Hilbert space with Schwarz–Pick kernel

I. V. Videnskii

Saint Petersburg State University, Saint Petersburg, Russia

Abstract: It is proved that a Hilbert function space on the set $X$ with Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with Nevanlinna–Pick kernel) generates the metric on the set $X$ – an analog of the hyperbolic metric in the unit disk. For a sequence satisfying an abstract Blaschke condition, it is proved that the associated infinite Blaschke product converges uniformly on any fixed bounded set and in the strong operator topology of the multiplier space.

Key words and phrases: hyperbolic metric, multipliers, reproducing kernel.

UDC: 517.5

Received: 01.08.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 229:5, 497–505

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025