RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 447, Pages 33–50 (Mi znsl6292)

Notes on the codimension one conjecture in the operator corona theorem

M. F. Gamal'

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Answering a question of S. R. Treil (2004), for every $\delta$, $0<\delta<1$, we constract examples of contractions whose characteristic function $F\in H^\infty(\mathcal E\to\mathcal E_\ast)$ satisfies the conditions $\|F(z)x\|\geq\delta\|x\|$ and $\dim\mathcal E_\ast\ominus F(z)\mathcal E=1$ for every $z\in\mathbb D$, $x\in\mathcal E$, but is not left invertible. Also, we show that the condition $\sup_{z\in\mathbb D}\|I-F(z)^\ast F(z)\|_{\mathfrak S_1}<\infty$, where $\mathfrak S_1$ is the trace class of operators, which is sufficient for the left invertibility of the operator-valued function $F$ satisfying the estimate $\|F(z)x\|\geq\delta\|x\|$ for every $z\in\mathbb D$, $x\in\mathcal E$, with some $\delta>0$ (S. R. Treil, 2004), is necessary for the left invertibility of an inner function $F$ such that $\dim\mathcal E_\ast\ominus F(z)\mathcal E<\infty$ for some $z\in\mathbb D$.

Key words and phrases: operator corona theorem, contraction, similarity to an isometry.

UDC: 517.98

Received: 23.06.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 229:5, 506–517

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024