RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 447, Pages 123–128 (Mi znsl6298)

This article is cited in 5 papers

Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere

N. A. Shirokov

Saint Petersburg State University, Saint Petersburg, Russia

Abstract: Let a function $f$ be holomorphic in the unit ball $\mathbb B^n$, continuous in the closed ball $\overline{\mathbb B}^n$, and let $f(z)\ne0$, $z\in\mathbb B^n$. Assume that $|f|$ belongs to the $\alpha$-Hölder class on the unit sphere $S^n$, $0<\alpha\leq1$. The present paper is devoted to the proof of statement that $f$ belongs to the $\alpha/2$-Hölder class on $\overline{\mathbb B}^n$.

Key words and phrases: holomorphic functions, Hölder classes, V. P. Havin–F. A. Shamoyan's theorem.

UDC: 517.5

Received: 14.05.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 229:5, 568–571

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025