RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 448, Pages 107–123 (Mi znsl6306)

On the ring of local unitary invariants for mixed $X$-states of two qubits

V. Gerdtab, A. Khvedelidzecde, Yu. Paliif

a Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980 Dubna, Russia
b University "Dubna", 141982 Dubna, Russia
c Institute of Quantum Physics and Engineering Technologies, Georgian Technical University, Tbilisi, Georgia
d A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
e National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
f Institute of Applied Physics, Chisinau, Republic of Moldova

Abstract: Entangling properties of a mixed two-qubit system can be described by local homogeneous unitary invariant polynomials in the elements of the density matrix. The structure of the corresponding ring of invariant polynomials for a special subclass of states, the so-called mixed $X$-states, is established. It is shown that for the $X$-states there is an injective ring homomorphism of the quotient ring of $SU(2)\times SU(2)$-invariant polynomials modulo its syzygy ideal to the $SO(2)\times SO(2)$-invariant ring freely generated by five homogeneous polynomials of degrees $1,1,1,2,2$.

Key words and phrases: mixed two-qubit systems, $X$-states, entanglement, ring of unitary invariant polynomials, fundamental invariants, syzygy ideal, ring homomorphism.

UDC: 512.714+530.145

Received: 16.09.2016

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2017, 224:2, 238–249

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024