RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 448, Pages 236–245 (Mi znsl6313)

This article is cited in 1 paper

Wishart–Pickrell distributions and closures of group actions

Yu. A. Neretinabcd

a University of Vienna, Vienna, Austria
b State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow, Russia
c Lomonosov Moscow State University, Moscow, Russia
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia

Abstract: Consider probability distributions on the space of infinite Hermitian matrices $\mathrm{Herm}(\infty)$ invariant with respect to the unitary group $\mathrm U(\infty)$. We describe the closure of $\mathrm U(\infty)$ in the space of spreading maps (polymorphisms) of $\mathrm{Herm}(\infty)$; this closure is a semigroup isomorphic to the semigroup of all contractive operators.

Key words and phrases: polymorphism, invariant measures, ergodic actions.

UDC: 517.987+517.986.4

Received: 06.09.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 224:2, 328–334

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024