RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 448, Pages 252–262 (Mi znsl6315)

Asymptotics of the Jordan normal form of a random nilpotent matrix

F. V. Petrova, V. V. Sokolovb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia

Abstract: We study the Jordan normal form of an upper triangular matrix constructed from a random acyclic graph or a random poset. Some limit theorems and concentration results for the number and sizes of Jordan blocks are obtained. In particular, we study a linear algebraic analog of Ulam's longest increasing subsequence problem.

Key words and phrases: Jordan normal form, random poset, longest increasing subsequence, limit shape.

UDC: 519.172.3+519.179.4+519.212.2+512.643

Received: 19.09.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 224:2, 339–344

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024