RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 449, Pages 5–14 (Mi znsl6319)

Interaction of Hecke–Shimura rings and zeta functions

A. Andrianov

St. Petersburg Department of Steklov Mathematical Institutef RAS, St. Petersburg, Russia

Abstract: An automorphic structure on a Lie group consists of Hecke–Shimura ring of an arithmetical discrete subgroup and a linear representation of the ring on an invariant space of automorphic forms given by Hecke operators. The paper is devoted to interactions (transfer homomorphisms) of Hecke–Shimura rings of integral symplectic groups and integral orthogonal groups of integral positive definite quadratic forms.

Key words and phrases: Hecke operators, Hecke–Shimura rings, interaction mappings, interaction sums, theta functions of integral quadratic forms.

UDC: 511

Received: 10.10.2016

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2017, 225:6, 841–847

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024