RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 449, Pages 130–167 (Mi znsl6325)

This article is cited in 7 papers

Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions

V. G. Zhuravlev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: Simplex-module algorithm ($\mathcal{SM}$-algorithm) for expansion of algebraic numbers $\alpha=(\alpha_1,\ldots,\alpha_d)$ in multidimensional continued fractions is offered. The method is based on 1) minimal rational simplices $\mathbf s$, where $\alpha\in\mathbf s$, and 2) Pisot matrices $P_\alpha$ for which $\widehat \alpha=(\alpha_1,\ldots,\alpha_d,1)$ is eigenvector. A multi-dimensional generalization of the Lagrange theorem is proved.

Key words and phrases: multidimensional continued fractions, best approximation, multidimensional generalization of Lagrange's theorem.

UDC: 511

Received: 01.08.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 225:6, 924–949

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025