RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 449, Pages 214–229 (Mi znsl6328)

This article is cited in 1 paper

On an extremal metric approach to extremal decomposition problems

G. V. Kuz'mina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Some applications of the module method to extremal decomposition problems are considered. For these problems, associated quadratic differentials have large number of free poles.

Key words and phrases: extremal metric, extremal decomposition, quadratic differential.

UDC: 517.54

Received: 07.11.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 225:6, 980–990

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025