RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 449, Pages 261–274 (Mi znsl6331)

This article is cited in 2 papers

Lattice points in many-dimensional balls

O. M. Fomenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $P_k(n)$ be the difference of the number of points of the integer lattice contained in the ball $y_1^2+\dots+y_k^2\leq n$ and the volume of this ball. We investigate the asymptotic behavior of the sums $\sum_{n\leq x}P_k(n)$, $(k\geq4)$, $\sum_{n\leq x}P_3^2(n)$, and $\sum_{n\leq x}P_4^2(n)$ as $x\to+\infty$.

Key words and phrases: many-dimensional balls, integral mean values, discrete mean values.

UDC: 511.466+517.863

Received: 17.10.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 225:6, 1012–1021

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024