RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 450, Pages 62–73 (Mi znsl6337)

Lower bounds on the number of leaves in spanning trees

D. V. Karpovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia

Abstract: Let $G$ be a connected graph on $n\ge2$ vertices with girth at least $g$. Let maximal chain of successively adjacent vertices of degree 2 in the graph $G$ does not exceed $k\ge1$. Denote by $u(G)$ the maximal number of leaves in a spanning tree of $G$. We prove, that $u(G)\ge\alpha_{g,k}(v(G)-k-2)+2$, where $\alpha_{g,1}=\frac{[\frac{g+1}2]}{4[\frac{g+1}2]+1}$ and $\alpha_{g,k}=\frac1{2k+2}$ for $k\ge2$. We present infinite series of examples showing that all these bounds are tight.

Key words and phrases: spanning tree, number of leaves.

UDC: 519.172.1

Received: 11.10.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 232:1, 36–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024