RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 451, Pages 14–28 (Mi znsl6343)

This article is cited in 3 papers

On algebras of three-dimensional quaternionic harmonic fields

M. I. Belishevab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: A quaternionic field is a pair $p=\{\alpha,u\}$ of function $\alpha$ and vector field $u$ given on a 3d Riemannian maifold $\Omega$ with the boundary. The field is said to be harmonic if $\nabla\alpha=\operatorname{rot}u$ in $\Omega$. The linear space of harmonic fields is not an algebra w.r.t. quaternion multiplication. However, it may contain the commutative algebras, what is the subject of the paper. Possible application of these algebras to the impedance tomography problem is touched on.

Key words and phrases: quaternion harmonic fields, commutative Banach algebras, reconstruction of manifolds.

UDC: 517

Received: 01.11.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 226:6, 701–710

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024