RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 248, Pages 225–230 (Mi znsl635)

This article is cited in 2 papers

Solvability of nonlinear equations in a cone of a Banach space

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The solvability conditions for the equation $Tu+F(u)=0$ are found in the case where the operator $[T+F'(u)]^{-1}$ exists only for $u\in K$, where $K$ is a cone in the Banach space $X$. An application concerning the solvability of boundary-value problems for a system of second-order differential equations is provided.

UDC: 519

Received: 15.02.1997


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:4, 3361–3364

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025