RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 452, Pages 86–107 (Mi znsl6358)

This article is cited in 2 papers

Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I

N. Gordeevab, U. Rehmannc

a Department of Mathematics, Russian State Pedagogical University, Moijka 48, St. Petersburg 191186, Russia
b St. Petersburg State University, Universitetsky prospekt, 28, Peterhof, St. Petersburg, 198504, Russia
c Ulf Rehmann, Department of Mathematics, Bielefeled University, Universitätsstrasse 25, D-33615 Bielefeld, Germany

Abstract: Let $D$ be a division algebra with a fixed involution and let $V$ be the corresponding unitary space over $D$ with $T$-condition (see [2]). For a pair of totally isotropic subspaces $u,v\leq V$ we consider the double cosets $P_u\gamma P_v$ of their stabilizers $P_u,P_v$ in $\Gamma=\mathrm{SU}(V)$. We give a description of cosets $P_u\gamma P_v$ in the terms of the intersection distance $d_\mathrm{in}(u,\gamma(v))$ and the Witt index of $u+\gamma(v)$.

Key words and phrases: classical algebraic groups, double cosets of closed subgroups, intersection distance.

UDC: 512.74

Received: 22.09.2016

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2018, 232:5, 647–661

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024