Abstract:
For any nonsplit $p>2$-extensions of finite groups with cyclic kernel and a quotient-group with two generators which acompanying extensions are semisimple there exists a realization of the quotient-group as Galois group of number fields such as corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).
Key words and phrases:ultrasolvability, embedding problem, minimal extensions.