RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 452, Pages 202–217 (Mi znsl6364)

This article is cited in 5 papers

Vector bundles on $\mathbf P^1_\mathbb Z$ with simple jumps

A. L. Smirnov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We consider vector bundles with rank 2 over the projective line over $\mathbb Z$. Assume that such a bundle $E$ is trivial on the generic fiber, and its restriction to any special fiber is isomorphic either to $\mathcal O^2$ or to $\mathcal O(-1)\oplus\mathcal O(1)$. Under these assumptions we prove that there exists an exact sequence of the form $0\to\mathcal O(-2)\to E\to\mathcal O(2)\to0$.

Key words and phrases: vector bundle, arithmetic surface, projective line, filtration, line bundle, reduction, jump.

UDC: 512.75

Received: 07.09.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 232:5, 721–731

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025