RUS
ENG
Full version
JOURNALS
// Zapiski Nauchnykh Seminarov POMI
// Archive
Zap. Nauchn. Sem. POMI,
1998
Volume 248,
Pages
242–246
(Mi znsl637)
A convergence theorem for the Newton method
M. N. Yakovlev
St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
The convergence of the Newton method is established dor equations of the form
$Tx+F(x)=0$
, where
$T$
is an unbounded operator, and the Fréchet derivative
$F'(u)$
of the operator
$F(u)$
satisfies Hölder's condition.
UDC:
519
Received:
03.11.1997
Fulltext:
PDF file (120 kB)
English version:
Journal of Mathematical Sciences (New York), 2000,
101
:4,
3372–3375
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025