RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 248, Pages 242–246 (Mi znsl637)

A convergence theorem for the Newton method

M. N. Yakovlev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: The convergence of the Newton method is established dor equations of the form $Tx+F(x)=0$, where $T$ is an unbounded operator, and the Fréchet derivative $F'(u)$ of the operator $F(u)$ satisfies Hölder's condition.

UDC: 519

Received: 03.11.1997


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:4, 3372–3375

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025