RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 453, Pages 104–113 (Mi znsl6373)

This article is cited in 1 paper

The congruence centralizer of the Sergeichuk–Horn matrix

Kh. D. Ikramov

Lomonosov Moscow State University, Moscow, Russia

Abstract: Let $A$ be a complex $n\times n$ matrix. We call the set of matrices $X$ such that $X^*AX=A$ the congruence centralizer of $A$. This is an analog of the classical centralizer of $A$ in the case where the group $\mathrm{GL}_n(\mathbb C)$ acts on the matrix space $M_n(\mathbb C)$ by congruence rather than similarity.
We find the congruence centralizer of the matrix
$$ \Delta_n=\left(
\begin{array}{cccc} &&&1\\ &&\cdots&i\\ &1&\cdots&\\ 1&i&& \end{array}
\right). $$
This matrix represents one of the three types of building blocks for the canonical form of square complex matrices with respect to congruences found by R. Horn and V. Sergeichuk.

Key words and phrases: centralizer, congruence centralizer, Toeplitz matrix, backward identity matrix.

UDC: 512.643

Received: 31.03.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 224:6, 883–889

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024