RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 453, Pages 219–242 (Mi znsl6380)

This article is cited in 3 papers

Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order $n$

O. V. Markova

Lomonosov Moscow State University, Moscow, Russia

Abstract: The paper establishes the existence of an element with nilpotency index $n-1$ in the algebra of upper niltriangular matrices $N_n(\mathbb F)$ over a field $\mathbb F$ with at least $n$ elements for all $n\ge5$ and, as a corollary, also in the full matrix algebra $M_n(\mathbb F)$. This result implies an improvement with respect to the basic field of known classification theorems due to D. A. Suprunenko, R. I. Tyschkevich, and I. A. Pavlov for algebras of the class considered.

Key words and phrases: algeba of niltriangular matrices, commutative nilpotent matrix subalgebra, nilpotency index.

UDC: 512.643

Received: 02.11.2016


 English version:
Journal of Mathematical Sciences (New York), 2017, 224:6, 956–970

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025