RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 454, Pages 183–194 (Mi znsl6392)

On the rate of convergence in the strong law of large numbers for non-negative random variables

V. M. Korchevsky

St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia

Abstract: We study the rate of convergence in the strong law of large numbers for sequences of non-negative random variables without the independence assumption. We obtain conditions for which an analog of the Baum–Katz theorem holds.

Key words and phrases: strong law of large numbers, rate of convergence in SLLN, Baum–Katz theorem, dependent random variables.

UDC: 519.214

Received: 28.10.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 229:6, 719–726

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024