RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2016 Volume 454, Pages 276–291 (Mi znsl6399)

On integral of a semi-Markov diffusion process

B. P. Harlamov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: A semi-Markov diffusion process $(X(t))$ $(t\ge0)$ is considered. The process $(J(t))$ $(t\ge0)$ equals to integral of the process $(X(t))$ on interval $[0,T)$ is studied. The relation between one-dimensional differential equation of the second order of elliptical type and asymptotics of a solution of Dirichlet problem on an interval with length tending to zero is derived. This relation is used for deriving a differential equation Laplace transform for the semi-Markov generating function of the process $(J(t))$.

Key words and phrases: diffusion Matkov process, semi-Markov diffusion, integral functional.

UDC: 519.2

Received: 10.10.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 229:6, 782–791

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024