RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 455, Pages 42–51 (Mi znsl6405)

This article is cited in 7 papers

Full and elementary nets over the quotient field of a principal ideal ring

R. Y. Dryaevaa, V. A. Koibaevab, Ya. N. Nuzhinc

a North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz, Russia
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz, Russia
c Siberian Federal University, Krasnoyarsk, Russia

Abstract: Let $K$ be the quotient field of a principal ideal ring $R$, and $\sigma=(\sigma_{ij})$ be a full (elementary) net of order $n\geq2$ (respectively, $n\geq3$) over $K$ such that the additive subgroups $\sigma_{ij}$ are nonzero $R$-modules. It is proved that, up to conjugation by diagonal matrix, all $\sigma_{ij}$ are ideals of a fixed intermediate subring $P$, $R\subseteq P\subseteq K$.

Key words and phrases: general and special linear groups, full and elementary nets of additive subgroups, net subgroup, field of fractions of a principal ideal ring.

UDC: 512.5

Received: 22.12.2016


 English version:
Journal of Mathematical Sciences (New York), 2018, 234:2, 141–147


© Steklov Math. Inst. of RAS, 2024