RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 455, Pages 209–225 (Mi znsl6416)

Subgroups of the general linear group containing the elementary subgroup over a commutative ring extension of rank 2

T. N. Hoi, N. H. T. Nhat

Faculty of Mathematics and Computer Science, University of Science, VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam

Abstract: Let $R=\prod_{i\in I}F_i$ be a direct product of fields and let $S=R[\sqrt d]=\prod_{i\in I}F_i[\sqrt{d_i}]$ be a ring extension of rank 2 of $R$. The subgroups of the general linear group $\operatorname{GL}(2n,R)$, $n\geq3$ that contain the elementary group $E(n,S)$ are described. It is shown that for every such a subgroup $H$ there exists a unique ideal $A\unlhd R$ such that
$$ E(n,S)E(2n,R,A)\leq H\leq N_{\operatorname{GL}(2n,R)}(E(n,S)E(2n,R,A)). $$


Key words and phrases: general linear group, lattice of subgroups, ring extension subgroup.

UDC: 512.743

Received: 05.04.2017

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2018, 234:2, 256–267

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024