Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity
O. L. Vinogradov,
A. V. Gladkaya St. Petersburg State University, St. Petersburg, Russia
Abstract:
Suppose that
$\sigma>0$,
$r,\mu\in\mathbb N$,
$\mu\geqslant r+1$,
$r$ is odd,
$p\in[1,+\infty]$,
$f\in W^{(r)}_p(\mathbb R)$. We construct linear operators
$\mathcal X_{\sigma,r,\mu}$ whose values are splines of degree
$\mu$ and of minimal defect with knots
$\frac{k\pi}\sigma$ (
$k\in\mathbb Z$) such that
\begin{gather*}
\|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\\
\leqslant\left(\frac\pi\sigma\right)^r\left\{\frac{A_{r,0}}2\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p+\sum_{\nu=1}^{\mu-r-1}A_{r,\nu}\omega_\nu\left(f^{(r)},\frac\pi\sigma\right)_p\right\}\\
+\left(\frac\pi\sigma\right)^r\biggl( \frac{\mathcal K_r}{\pi^r}-\sum_{\nu=0}^{\mu-r-1}2^\nu A_{r,\nu}\biggr)2^{r-\mu}\omega_{\mu-r}\left(f^{(r)},\frac\pi\sigma\right)_p,
\end{gather*}
where for
${p=1,+\infty}$ the constants cannot be reduced on the class
$W^{(r)}_p(\mathbb R)$. Here $\mathcal K_r=\frac4\pi\sum_{l=0}^\infty\frac{(-1)^{l(r+1)}}{(2l+1)^{r+1}}$ are the Favard constants, the constants
$A_{r,\nu}$ are constructed explicitly,
$\omega_\nu$ is a modulus of continuity of order
$\nu$. As a corollary, we get the sharp Jackson type inequality
$$
\|f-\mathcal X_{\sigma,r,\mu}(f)\|_p\leqslant\frac{\mathcal K_r}{2\sigma^r}\omega_1\left(f^{(r)},\frac\pi\sigma\right)_p.
$$
Key words and phrases:
best approximation, nonperiodic splines, Jackson type inequalities.
UDC:
517.5
Received: 02.05.2017