RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 456, Pages 135–143 (Mi znsl6427)

Unconditional convergence for wavelet frame extensions

E. A. Lebedevaab

a St. Petersburg State University, St. Petersburg, Russia
b Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

Abstract: Let $\{\psi_{j,k}\}_{(j,k)\in\mathbb Z^2}$, $\{\widetilde\psi_{j,k}\}_{(j,k)\in\mathbb Z^2}$ be dual wavelet frames in $L_2(\mathbb R)$, let $\eta$ be an even, bounded, decreasing on $[0,\infty)$ function such that
$$ \int_0^\infty\eta(x)\ln(1+x)\,dx<\infty, $$
and $|\psi(x)|,|\widetilde\psi(x)|\le\eta(x)$. Then the series $\sum_{j,k\in\mathbb Z}(f,\widetilde\psi_{j,k})\psi_{j,k}$ converges unconditionally in $L_p(\mathbb R)$, $1<p<\infty$.

Key words and phrases: wavelet frames, unconditional convergence, wavelets.

UDC: 517.518+517.972

Received: 03.05.2017


 English version:
Journal of Mathematical Sciences (New York), 2018, 234:3, 357–361


© Steklov Math. Inst. of RAS, 2025