RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 456, Pages 172–176 (Mi znsl6431)

Smoothness of a holomorphic function and its modulus on the boundary of a polydisk

N. A. Shirokovabc

a St. Petersburg State University, St. Petersburg, Russia
b National Research University "Higher School of Economics", St. Petersburg Branch, St. Petersburg, Russia
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We prove that if a function $f$ is holomorphic in the polydisk $\mathbb D^n$, $n\ge2$, $f$ is continuous in $\overline{\mathbb D^n}$, $f(z)\ne0$, $z\in\mathbb D^n$, and $|f|$ belongs to the $\alpha$-Hölder class, $0<\alpha<1$, on the boundary of $\mathbb D^n$ then $f$ belongs to the $(\frac\alpha2-\varepsilon)$-Hölder class on $\overline{\mathbb D^n}$ for any $\varepsilon>0$.

Key words and phrases: holomorphic functions, Hölder classes, polydisk.

UDC: 517.537

Received: 04.05.2017


 English version:
Journal of Mathematical Sciences (New York), 2018, 234:3, 381–383


© Steklov Math. Inst. of RAS, 2025