RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 457, Pages 183–193 (Mi znsl6442)

On estimation of functions of a parameter observed in Gaussian noise

I. A. Ibragimovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Mathematics and Mechanics Faculty, St. Petersburg State University, St. Petersburg, Russia

Abstract: The main problem of the paper looks as follows. A functional parameter $\theta\in\Theta\subset L_2(-\infty,\infty)$ is observed in Gaussian noise. The problem is to estimate the value $F(\theta)$ of a given function $F$. A construction of asymptotically efficient estimates for $F(\theta)$ is suggested under the conditions that $\Theta$ admits approximations by subspaces $H_T\subset L_2$ with the reproducing kernels $K_T(t, s)$, $K_T(t,t)\le T$.

Key words and phrases: nonparametric estimation problems, estimation of functions, reproducing kernel spaces.

UDC: 519.2

Received: 21.09.2017


 English version:
Journal of Mathematical Sciences (New York), 2019, 238:4, 463–470


© Steklov Math. Inst. of RAS, 2024