RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 457, Pages 194–210 (Mi znsl6443)

Gaussian approximation numbers and metric entropy

T. Kühna, W. Lindeb

a Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany
b University of Delaware, 402 Ewing Hall, Newark DE, 19716, USA

Abstract: The aim of this paper is to survey properties of Gaussian approximation numbers. We state the basic relations between these numbers and and other $s$-numbers as e.g. entropy, approximation or Kolmogorov numbers. Furthermore, we fill a gap and prove new two-sided estimates in the case of operators with values in a $K$-convex Banach space. In a final section we apply the relations between Gaussian and other $s$-numbers to the $d$-dimensional integration operator defined on $L_2[0,1]^d$.

Key words and phrases: Gaussian approximation numbers, Kolmogorov numbers, entropy numbers.

UDC: 519.2

Received: 19.06.2017

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 238:4, 471–483


© Steklov Math. Inst. of RAS, 2024