RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 457, Pages 286–316 (Mi znsl6447)

This article is cited in 3 papers

Gaussian convex bodies: a non-asymptotic approach

G. Paourisa, P. Pivovarovb, P. Valettasb

a Department of Mathematics, Mailstop 3368, Texas A&M University, College Station TX 77843-3368 USA
b Mathematics Department, University of Missouri, Columbia, MO 65211 USA

Abstract: We study linear images of a symmetric convex body $C\subseteq\mathbb R^N$ under an $n\times N$ Gaussian random matrix $G$, where $N\ge n$. Special cases include common models of Gaussian random polytopes and zonotopes. We focus on the intrinsic volumes of $GC$ and study the expectation, variance, small and large deviations from the mean, small ball probabilities, and higher moments. We discuss how the geometry of $C$, quantified through several different global parameters, affects such concentration properties. When $n=1$, $G$ is simply a $1\times N$ row vector and our analysis reduces to Gaussian concentration for norms. For matrices of higher rank and for natural families of convex bodies $C_N\subseteq\mathbb R^N$, with $N\to\infty$, we obtain new asymptotic results and take first steps to compare with the asymptotic theory.

Key words and phrases: intrinsic volumes, Gaussian matrices, deviation inequalities, higher moments.

UDC: 519.2

Received: 12.09.2017

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 238:4, 537–559


© Steklov Math. Inst. of RAS, 2025