This article is cited in
1 paper
On Riesz means of the coefficients of Epstein's zeta functions
O. M. Fomenko St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let
$r_k(n)$ denote the number of lattice points on a
$k$-dimensional sphere of radius
$\sqrt n$.The generating function
$$
\zeta_k(s)=\sum^\infty_{n=1}r_k(n)n^{-s},\ k\geq2,
$$
is Epstein's zeta-function. Let
$k=3$. We consider the Riesz mean of the type
$$
D_\rho(x;\zeta_3)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_3(n)
$$
for any fixed
$\rho>0$ and define the error term
$\Delta_\rho(x;\zeta_3)$ by
$$
D_\rho(x;\zeta_3)=\frac{\pi^{3/2}x^{\rho+3/2}}{\Gamma(\rho+5/2)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_3(0)+\Delta_\rho(x;\zeta_3).
$$
A result of K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) gives
$$
\Delta_\rho(x;\zeta_3)=
\begin{cases}
O(x^{1/2+\rho/2)}&(\rho>1),\\
\Omega_\pm(x^{1/2+\rho/2})&(\rho\geq0).
\end{cases}
$$
In § 2 one proves that
$$
\Delta_\rho(x;\zeta_3)=
\begin{cases}
O(x\log x)&(\rho=1),\\
O(x^{2/3+\rho/3+\epsilon})&(1/2<\rho<1),\\
O(x^{3/4+\rho/4+\epsilon})&(0<\rho\leq1/2).
\end{cases}
$$
In § 3 one mentions a few examples for which results of § 2 are applicable.
In § 4 one investigates Riesz means of the coefficients of
$\zeta_k(s)$,
$k\geq4$.
UDC:
511.466+517.863
Received: 29.09.2017